Автоматы для асинхронных двигателей

Запасные части

Автоматический выключатель для защиты электродвигателя — как правильно подобрать?

При подборе автоматических выключателей, способных защитить электрические моторы от повреждения в результате КЗ или чрезмерно высоких нагрузок, необходимо учитывать большую величину пускового тока, нередко превышающую номинал в 5-7 раз. Наиболее мощным стартовым перегрузкам подвержены асинхронные силовые агрегаты, обладающие короткозамкнутым ротором. Поскольку это оборудование широко применяется для работы в производственных и бытовых условиях, то вопрос защиты как самого устройства, так и питающего кабеля очень актуален. В этой статье речь пойдет о том, как правильно рассчитать и выбрать автомат защиты электродвигателя.

Задачи устройств для защиты электродвигателей

Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную. Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки. Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.

Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:

Управляющая и защитная автоматика для двигателя на видео:

Необходимо также учитывать, что автомат для защиты электродвигателя должен быть совместим с контрольными и управляющими механизмами.

Расчет автомата для электродвигателя

Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом. Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь. Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.

Внутреннее устройство автомата защиты двигателя на видео:

Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.

Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.

Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.

Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.

Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (Inт).

Современные устройства электрозащиты силовых агрегатов

Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.

Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.

Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления. Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат. Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.

Особенности защиты электрических двигателей в производственных условиях

Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.

Читайте также:  Датчик оборотов двигателя матиз

Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:

Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.

Заключение

В этом материале мы подробно осветили тему защитных устройств для электрических двигателей, и разобрались с тем, как подобрать автомат для электромотора и какие параметры при этом должны быть учтены. Наши читатели могли убедиться, что расчеты, которые производятся при этом, совсем несложны, а значит, подобрать аппарат для сети, в которую включен не слишком мощный силовой агрегат, вполне можно самостоятельно.

Источник

Как выбрать магнитный пускатель и автоматический выключатель для асинхронного двигателя

На примерах рассмотрен принцип выброра магнитного пускателя для управления электродвигателем и автоматического выключателя для его защиты от токов короткого замыкания и перегрузки.

Содержание статьи

Для пуска, реверсирования, принудительной остановки противотоком асинхронных электродвигателей электрики используются контакторы и магнитные пускатели. От правильности выбора коммутационной аппаратуры зависит, как и безотказность системы в целом, так и электробезопасность обслуживающего персонала.

Выбор пускателя и избыточным коммутируемым током ведет к большим финансовым затратам, при его коммутации слышны шлепки большей громкости, чем те что издают маленькие пускатели. Недостаточные по коммутируемой мощности пускатели долго не прослужат, будут греться, и подгорать клеммники и контакты. В результате переходное сопротивление контакта будет расти до тех пор, пока контакт не исчезнет полностью, что приведет к преждевременной замене аппарата.

Автоматические выключатели также должны быть правильно подобраны, особенно при тяжелом пуске двигателя. Слишком чувствительный автомат будет выбивать при пуске, а если он наоборот взят с излишним запасом по току, то в аварийной ситуации может и не отреагировать, что приведет к повреждению кабеля, обмотки двигателя вплоть до возгорания.

Пуск для электродвигателя сопровождается повышенным током в период разгона его до номинальных оборотов, в случае перегрузки и нехватки мощности двигателя для вращения исполнительных механизмов возможно пониженное число оборотов с повышенными токами, в плоть до того, что он вообще не начнет раскручиваться. И наоборот если мощность двигателя избыточна, то потребляемый им ток будет ниже номинального.

Из-за вышеперечисленных причин и появляется необходимость правильного подбора пусковой и защитной аппаратуры в виде магнитных пускателей, контакторов, тепловых реле и автоматических выключателей.

Автоматические выключатели устанавливаются до магнитного пускателя, чтобы в случае необходимости полностью обесточить систему, как силовую цепь, так и цепь управления (питания катушки).

Вместо автоматических выключателей могут использоваться плавкие вставки или предохранители, но в последнее время такие решения встречаются реже, чем раньше. Это усложняет обслуживание и вызывает необходимость иметь в запасе хотя бы комплект предохранителей.

Выбор магнитного пускателя

Магнитные пускатели выпускаются на определенный номинальный ток, из ряда: 6.3 – 10 – 25 – 40 – 63 – 100 – 160 – 250. Интересно, что линейка номиналов пускателей соотвествует золотому сечению. Еще ему соотвествуют стандартные значения сечения проводов. Подробнее об этом смотрите здесь: Какая связь между сечениями проводов и популяцией кроликов

Однако если номинальный ток пускателя соответствует току двигателя, это еще не значит, что их можно использовать в паре. Если такое понятие как категория применения, она характеризует режим работы коммутируемой аппаратуры, частоту и условия коммутации. Иначе говоря – это способность переносить пусковые токи. Пусковые токи асинхронного двигателя могут превышать номинальные и в 10 раз, это зависит от условий пуска, напряжения в сети и прочих факторов.

Категории применения обозначаются: «АС-номеркатегории». Сводная таблица величин и категорий применения для магнитных пускателей расположена ниже.

Из неё нас интересует строка «АС-3 – управления двигателями с короткозамкнутым ротором (пуск, отключение без предварительной остановки)». Из этого очевидно, что коммутационные аппараты с такой категорией созданы для того, что бы включать и отключать электродвигателя. Они выдерживают прямой пуск.

Далее нужно определиться с номинальным током пускателя. Для этого нам нужно знать технические характеристики коммутируемого двигателя, а именно:

Читайте также:  В двигатель залил ацетон

cos Ф – коэффициент мощности,

P – мощность двигателя номинальная;

U – рабочее напряжение (коммутируемое);

Тогда номинальный ток пускателя равен:

Для быстрых расчетов иногда применяют другую методику, когда мощность двигателя умножают на 2 и получают номинальный ток (приблизительно).

Далее нужно определить пусковой ток, в справочниках это указывается либо как «k» либо как «Iп/Iн». Это кратность или соотношение пускового тока к номинальному. Показывает, насколько ток в момент пуска превышает номинальную величину.

Пускатель с категорией применения АС-3 может коммутировать ток в 5-7 раз больше чем номинальный, для чего это сказано я покажу при расчетах ниже.

Выбираем пускатель

Допустим, у нас есть асинхронный двигатель с мощностью 2.2 кВт типа 4АМ100L6У3. На его шильдике написано, что кпд 81.0%, коэффициент мощности – 0.73, в интернете я нашел его технические данные, чтобы узнать кратность пускового тока, она оказалась – 5.5

1. Быстрый способ: IН=2.2*2 = 4.4А

2. Сложный способ: IНОМ=2200/(380*0.81*0.73*1.73)=5.6А

Результаты такого расчета дали больший ток.

Теперь считаем пусковой ток: IП=5.6*5.5=30.8А

Подбираем пускатель, с номинальным током более чем 5.6 А, с категорией применения АС-3. В результате обзора рынка, нам подходит пускатель ПМЕ 111 на 10А с тепловым реле.

Выбор автоматического выключателя

Автомат может сработать при пуске или затяжном пуске электродвигателя, когда потребляемый ток значительно превышает максимальный. В автоматическом выключателе за защиту отвечают два узла:

1. Электромагнитный расцепитель. Срабатывает при пиковом токе перегрузке. Этот ток зависит от типа автомата.

2. Тепловой расцепитель. Срабатывает при незначительном но длительном превышении номинального тока.

Номинальный ток двигателя у нас 5.6 А, значит нам нужен автомат не меньше этого значения. Типы автоматов куказывают на доустипое превышение по току в пике:

Виды защитных характеристик автоматических выключателей

Пример выбора автоматического выключателя

Так как у нас пусковой ток в 5.5 раз больше чем номинальный, это значит что нам подходит автомат типа С и D. Например, автоматический разъединитель EZ9F34306 Schneider Easy9, рассчитан на 6 А и его тип C, позволит выдержать пусковые токи до 60 А.

Но такой автомат будет работать на пределе да и реальная уставка по току может быть ниже 5.5, т.к. тип С находится в пределах 5-10, нужен запас по току хотя бы в 20%.

Поэтому лучше установить автоматический выключатель на тот же ток или немного больший, но типа D, например ИЭК 6-8А ВА47-29

Или на ток 10А с типом C, например PL4-C10/3 Moeller / Eaton

Требования к автомату заключаются в том, чтобы он стабильно выдерживал номинальный ток, и его не выбило при пуске. Если планируется режим работы двигателя с частыми включения и выключениями лучше использовать автомат типа D, он менее чувствителен к всплескам тока.

Приниципы выбора других электрических аппаратов:

Эксплуатация и ремонт электрических аппаратов:

Заключение

Автоматический выключатель нужен для защиты питающего кабеля и дополнительной защиты двигателя, в случае затяжного пуска или заклинивания вала, дополнительно лучше использовать тепловую защиту. Магнитный пускатель должен выдерживать как напряжение, так и ток, который он будет коммутировать.

Электродвигатель должен быть исправен, отсутствовать витковые замыкания, а его вал должен свободно вращаться. В случае пуска двигателя под нагрузкой лучше брать коммутационную аппаратуру с запасом до 2-х раз для уменьшения вероятности преждевременного подгорания контактов и ложных срабатываний автоматического выключателя.

Питающий кабель должен соответствовать номинальному току, с учетом пусковых токов, как и способ соединения кабеля (использование гильз, наконечников, клеммников и прочего). Состояние всех соединений должно быть в норме – отсутствовать окислы, нагар и прочие механические дефекты, которые могут уменьшить площадь прилягания контакта.

Источник

Автоматы защиты двигателей

2021-02-13 Промышленное 4 комментария

Автоматы защиты двигателей, или по другому мотор-автоматы, предназначены в первую очередь для защиты электродвигателей от перегрева и последствий короткого замыкания, а также могут использоваться в качестве основного или аварийного выключателя. То есть по сути они совмещают в одном корпусе два устройства — автоматический выключатель и тепловое реле.

Ранее, до того как стали повсеместно применяться мотор-автоматы, для защиты двигателей использовались тепловые реле в паре с контактором.

По такой схеме тепловое реле, при превышении двигателем потребляемого тока нагрузки, размыкает цепь катушки контактора, отключая его силовые контакты и таким образом защищая двигатель. Схема рабочая, проверенная, но не лишенная недостатков. В первую очередь к ним стоит отнести неспособность тепловых реле защитить от КЗ, поэтому необходимо дополнительно использовать автоматические выключатели. Да и габариты такой конструкции из контактора и теплового реле получаются достаточно большими.

Читайте также:  Вес двигателя для мотоблока

Поэтому с появлением автоматов защиты двигателей, тепловые реле стали отходить на второй план и на данный момент, их применение довольно ограничено.

Стоит сразу сказать, что по своим характеристикам, автоматы защиты двигателей несколько отличаются от обычных автоматических выключателей. В первую очередь тем, что:

Принцип работы автомата защиты двигателей

Электромагнитный расцепитель выполнен в виде катушки соленоида, внутри которой расположен стальной сердечник с возвратной пружиной. Под действием электрического тока короткого замыкания сердечник втягивается в катушку, преодолевая сопротивление пружины и воздействует на механизм расцепления, в следствии чего контакты размыкаются.

Принцип работы тепловых расцепителей автомата такой же, как у тепловых реле. Имеется биметаллическая пластина, состоящая из двух пластин, которые сделаны из материалов с разными коэффициентами теплового расширения. Под воздействием высокой температуры, возникающей в следствии прохождения тока, превышающего номинальный, пластина начинает изгибаться, давить на механизм расцепителя и под действием пружины происходит размыкание контактов, тем самым обесточивается цепь.

Сразу после срабатывания защиты, вновь включить автомат не получится, таким образом обеспечивается выдержка времени для охлаждения двигателя после его аварийного останова.

Уставка срабатывания задается при помощи поворотного регулятора на лицевой части.

Необходимый ток уставки выставляется вращением регулятора до совмещения нужного значения тока на шкале с риской на корпусе.

Схема подключения автомата защиты двигателей

Автоматический выключатель следует устанавливать перед другими аппаратами в цепи. Это позволяет защитить не только сам двигатель, но и например, контактор от повреждения в случае перегрузки или короткого замыкания. Также, как и в случае автоматических выключателей, автомат защиты двигателей можно дополнительно оснастить вспомогательными контактами (контакты состояния, аварийный контакт), которые можно задействовать, например, для индикации состояния.

В случае подключения трехфазной нагрузки схема подключения стандартная и не вызывает вопросов, а вот в случае однофазной нагрузки (стоит отметить, что все мотор автоматы выпускаются только в трехполюсном исполнении), иногда встречаюсь с подключением, когда просто задействуют один силовой контакт автомата защиты. Но такое подключение неправильное, необходимо, как на рисунке ниже слева, задействовать все три контакта.

Кстати, обратите внимание, что автомат защиты двигателя имеет свое условно-графическое обозначение в схемах, отличающееся от обозначения обычных автоматических выключателей. А вот буквенное обозначение у них идентично.

Основные функции защиты

Выбор автомата защиты

В случае прямого запуска, когда двигатель включается в работу с помощью мотор-автомата и контактора, необходимо в первую очередь знать его мощность. Эту информацию можно найти либо в технических характеристиках на двигатель, либо в паспортных данных, которые указаны на шильде.

Следующим шагом подбираем автомат, исходя из номинальной мощности двигателя. У различных фирм-производителей можно найти таблицы характеристик, где указаны номинальный рабочий ток и диапазон регулировки автоматов защиты в зависимости от мощности двигателя. В частности, на рисунке ниже приведена таблица соответствия автоматов защиты двигателей компании Allen Bradley.

И последним этапом выставляем необходимый ток отключения при помощи регулятора диапазона. Обычно указывается, что он должен быть больше или равен номинальному току электродвигателя. Но желательно, чтобы ток срабатывания защиты превышал на 10-20% номинальный ток двигателя.

То есть в случае, если номинальный ток двигателя составляет например 10 А, умножаем это значение на 1,1. Получаем 11 А. Это значение тока и выставляем регулятором.

И еще хотел сказать пару слов о конструктивном исполнении мотор автоматов. В первую очередь следует отметить, что по способу управления существует два типа автоматов — кнопочные и с поворотным выключателем. Также клеммы могут быть либо винтовые, либо с пружинным контактом ( применяются для двигателей, мощностью до 2 кВт). Можно еще отметить наличие кнопки Тест на лицевой стороне корпуса, позволяющей имитировать срабатывание защиты автомата для проверки его работоспособности.

И в заключении хотел отметить, что эксплуатация двигателей без защитных устройств часто приводит к их выходу из строя, в следствии перегрузки, обрыва фазы, скачков напряжения и т.д. А это в свою очередь приводит к финансовым затратам, простою оборудования. Поэтому автоматы защиты двигателей являются необходимым элементом и не стоит на них экономить, тем более, что цены на них на данный момент вполне приемлемые.

Источник

Жизненные советы и рекомендации